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Abstract
A statistical mechanical framework to analyze linear vector channel models in
digital wireless communication is proposed for a large system. The framework
is a generalization of that proposed for code-division multiple-access systems
in Takeda et al (2006 Europhys. Lett. 76 1193) and enables the analysis of the
system in which the elements of the channel transfer matrix are statistically
correlated with each other. The significance of the proposed scheme is
demonstrated by assessing the performance of an existing model of multi-input
multi-output communication systems.

PACS numbers: 84.40.Ua, 75.10.Nr, 89.70.+c

1. Introduction

In recent years, the number of objects to which statistical mechanical analysis can be
applied has increased rapidly. The digital wireless communication system is one such
example, and many intriguing studies in this field have revealed a strong relationship between
telecommunication systems and statistical mechanics [1, 2].

The linear vector channel is one of the basic categories of a wireless communication
system. Code division multiple access (CDMA) [3], which is employed in third-generation
cellular phone systems and wireless LANs, is a type of linear vector channel. In the general
CDMA scenario, many users transmit discrete symbols that are modulated by random signature
sequences using a single channel, and mixtures of user signals and noises are received at the
other end of the channel. This indicates that the problem of simultaneously demodulating user
signals from received signals can be mapped to a virtual spin system governed by random
interactions. This problem has been successfully solved by techniques developed in statistical
mechanics for disordered systems, and in particular by the replica method [4–8].

The multi-input multi-output (MIMO) system is another well-known example of a linear
vector channel to which the statistical mechanical approach is applicable [9–11]. A MIMO
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system is composed of many transmit and receive antennas. In a general scenario, multiple
input signals transmitted from transmit antennas are received at the receive antennas, being
linearly transformed to multiple output signals by a channel transfer matrix. In several
preceding studies, channel transfer matrices are regarded as deterministic. However, the
elements of such matrices vary with time in actual cases, which implies that handling the
matrices as random is more realistic. In the simplest model, each element of the matrix could
be regarded as an independent Gaussian variable with zero mean. Unfortunately, modeling
of this type is inadequate for describing realistic MIMO systems in which correlations among
the matrix elements are, in general, not negligible due to spatial proximity among transmit
or receive antennas. For continuous inputs that are modeled as Gaussian variables, simple
expressions of performance evaluation can still be obtained by using knowledge of random
matrix theory [12]. However, such expressions cannot be applied directly to discrete inputs,
which are usually used in digital communication. Therefore, developing a framework to
analyze MIMO systems, and, more generally, linear vector channels of discrete inputs are
demanded.

The purpose of the present paper is to meet such a demand. Recently, the authors
proposed a scheme to analyze CDMA systems under the assumption that a cross-correlation
matrix of signature sequences can be regarded as a sample generated from a certain type of
random matrix ensemble, which is characterized by an eigenvalue spectrum [13]. We herein
generalize this scheme so as to be applicable to a wider class of linear vector channels.

The present paper is organized as follows. In section 2, the linear vector channel models
investigated herein are introduced. Section 3, in which a framework to analyze a given system
is developed based on the replica method, is the main part of this paper. The assumption
of uniformity of transmitted signals generally guarantees that the average of the replicated
Boltzmann weight depends on replicated vectors only through overlaps among the replicated
and original vectors. This makes it possible to evaluate typical properties of the target system
using a single function, which is referred to as G(x) [14, 15]. In general, the analysis of
typical property requires assessment of quenched averages, which implies that G(x) should
be evaluated as a quenched average utilizing the replica method. However, we will show that
the assessment of this function can generally be reduced to the calculation of an annealed
average due to a distinctive property underlying the evaluation of the average eigenvalue
spectrum of the cross-correlation matrix for a given channel transfer matrix ensemble using
the replica method if the eigenvalue spectrum of the ensemble is self-averaging. In section 4,
the significance of the framework is demonstrated by application to one of the typical MIMO
models called the Kronecker model. Finally, section 5 presents a summary of the present
study.

2. Model definition

A linear vector channel is defined as a system in which an input vector composed of K
components, b = (bk)(k = 1, 2, . . . , K) (boldface denotes vector or matrix), is linearly
transformed by an L × K channel transfer matrix H and is additively degraded by noise.
For generality and simplicity, we assume that H and b are defined over the complex number
field, and the channel noise is given as circularly symmetric complex additive white Gaussian
noise, the variance of which is N0. We denote Re(u) and Im(u) as real and complex parts of
a complex number u, respectively. |u| =

√
Re(u)2 + Im(u)2 denotes the absolute value of u.

Under these assumptions and notations, the output vector

r = Hb0 +
√

N0η, (1)
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is received by a receiver, where b0 denotes the input vector that is actually transmitted, and
the components of the noise vector η, ηl (l = 1, 2, . . . , L), independently obey circularly
symmetric complex normal distributions P(η) = π−1 exp[−|η|2] = π−1 exp[−(Re(η)2 +
Im(η)2)].

In the performance analysis shown below, H is regarded as a sample from a certain
random matrix ensemble, typical samples of which are dense. Namely, we assume that most
elements of typical H do not vanish. Since an elegant framework has been already established
for Gaussian inputs [12], we focus on cases of discrete inputs in which input symbols are
expressed as bk ∈ {e2π is/S |s = 0, 1, 2, . . . , S − 1} ≡ AS , where i = √−1. This expression
corresponds to standard digital communication schemes of binary phase shift-keying (BPSK)
and quadratic phase shift-keying (QPSK) for S = 2 and S = 4, respectively. We further
assume that b is encoded so as to be uniformly generated as P(b) = 1/SK for optimizing the
communication performance.

After receiving r the remaining task for the receiver is to infer the original vector b0. The
optimal inference scheme to minimize the componentwise probability of incorrect estimation,
which is referred to as Pb, is constructed from the posterior distribution

P(b|r) = Z−1 exp

[
− 1

Nr

|r − Hb|2
]

, (2)

as b̂k = argmaxbk

{∑
b\bk

P (b|r)
}

in the hope that a model parameter of noise variance Nr is
in agreement with the correct value N0. Here,

Z ≡
∑
b∈AK

S

exp

[
− 1

Nr

|r − Hb|2
]

(3)

serves as the partition function, and b̂k denotes the estimate of b0
k , where AK

S denotes the kth
extension of symbol set AS .

3. Analytical scheme

3.1. Gauge transformation and Haar measure

Since the posterior distribution (2) depends on predetermined random variables H, b0, and
η, we resort to the replica method for assessing typical property of the linear vector channel.
Thus, we first substitute equation (1) into equation (3) and perform gauge transformation(
b0

k

)∗
ba

k → τ a
k (k = 1, 2, . . . , K; a = 1, 2, . . . , n), where * denotes the complex conjugate.

This yields an expression of the replicate partition function (3) for n = 1, 2, . . . as

Zn =
∑

τ 1,τ 2,...,τ n∈AK
S

exp

[
− 1

Nr

n∑
a=1

|H diag(b0)(1 − τ a) +
√

N0η|2
]

, (4)

where 1 is a K-dimensional vector, all elements of which are unity and τ a = (
τ a
k

)
(k =

1, 2, . . . , K; a = 1, 2, . . . , n). The diagonal matrix diag(b0) is defined as diag(b0) ≡ (
δkj b

0
k

)
.

Next, we average this expression with respect to b0 over the correct prior P(b0) = 1/SK ,
fixing gauged vectors {τ a} = {τ 1, τ 2, . . . , τ n}. Here, we consider a property whereby vectors
diag(b0)(1 − τ a)(a = 1, 2, . . . , n) are sampled isotropically in K-dimensional vector space
under constraints of relative configuration

(1 − τ a) · (1 − τ b) = (b0 − ba) · (b0 − bb) = K(1 − m∗
a − mb + qab), (5)

for a �= b(=1, 2, . . . , n), and

(1 − τ a) · (1 − τ a) = (b0 − ba) · (b0 − ba) = 2K(1 − ma), (6)
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for a = 1, 2, . . . , n, where · is defined as x ·y = ∑K
k=1 x∗

k yk for complex vectors x = (xk) and
y = (yk)(k = 1, 2, . . . , K). ma = (1/K)1 · τ a = (1/K)b0 · ba and qab = (1/K)τ a · τ b =
(1/K)ba ·bb = q∗

ba (a, b = 1, 2, . . . , n). This implies that for any fixed set of {τ a}, the average
of the replicated Boltzmann weight exp

[−1/(Nr)
∑n

a=1 |H diag(b0)(1 − τ a) +
√

N0η|2]with
respect to b0 is assessed as

1

SK

∑
b0∈AK

S

exp

[
− 1

Nr

n∑
a=1

|H diag(b0)(1 − τ a) +
√

N0η|2
]

�
∫

DU exp

[
− 1

Nr

n∑
a=1

|HU(1 − τ a) +
√

N0η|2
]

, (7)

where DU denotes the Haar measure of unitary matrix U, which is normalized as
∫
DU = 1.

Equation (7) is justified by the following arguments. For a fixed typical pair of {τ a} and H,
which is dense, components of H diag(b0)(1−τ a), denoted as tal = ∑

k,j Hlkb
0
kδkj

(
1− τ a

j

) =∑
k Hlkb

0
k

(
1 − τ a

k

)
, are composed of many independent random variables and, therefore,

can be dealt with as complex Gaussian variables as a consequence of the central limit
theorem when b0 is sampled from the uniform distribution P(b0) = 1/SK . This means
that statistical properties of tal are fully characterized by only the first and second moments,
which are determined by those of the matrix components of diag(b0). More precisely, the
relevant moments are evaluated as

[
tal
]
b0 = 0 and

[(
tal
)∗

tbm
]
b0 = ∑

k,n H ∗
lkHmn

[(
b0

k

)∗
b0

n

]
b0

(
1−

τ a
k

)∗(
1 − τ b

n

) = ∑
k,n H ∗

lkHmnδkn

(
1 − τ a

k

)∗(
1 − τ b

n

) = ∑
k H ∗

lkHmk

(
1 − τ a

k

)∗(
1 − τ b

k

) �(∑
k H ∗

lkHmk

)×K−1(1 − τ a) · (1 − τ b) for l, m = 1, 2, . . . , L and a, b = 1, 2, . . . , n, where
[· · ·]b0 represents average with respect to P(b0) = 1/SK . The final replacement for the second
moments

[(
tal
)∗

tbm
]
b0 is allowed as H and {τ a} are statistically uncorrelated a priori. Here, it

is noteworthy that the identical moments are reproduced by substituting unitary matrix U for
diag(b0) in conjunction with replacement of the Haar measure DU with P(b0) = 1/SK . This
validates equation (7), which will be supported by numerical experiments shown later herein
as well.

3.2. G-functions and free energy

Next, averaging with respect to η, we obtain∫
C

L

dη

πL
exp[−|η|2] × exp

[
− 1

Nr

n∑
a=1

|HU(1 − τ a) +
√

N0η|2
]

= exp [Tr RL(n)] , (8)

where dη = ∏L
l=1 d Re(ηl)

∏L
l=1 d Im(ηl), R = U†(H†H)U and

L(n) = − 1

Nr

n∑
a=1

(1 − τ a)(1 − τ a)†

+
N0

Nr(Nr + nN0)

(
n∑

a=1

(1 − τ a)

)(
n∑

b=1

(1 − τ b)

)†

, (9)

where
∫
X denotes the integration over a certain support set X . Next, integrating equation (8)

over the Haar measure DU in conjunction with taking average with respect to H yields an
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expression of the averaged Boltzmann factor

exp

[
− 1

Nr

n∑
a=1

|H diag(b0)(1 − τ a) +
√

N0η|2
]

�
[∫

DU exp[Tr RL(n)]

]
H

�
[

exp

[
K Tr GH

(
L(n)

K

)]]
H

� exp

[
K Tr

[
GH

(
L(n)

K

)]
H

]
(10)

≡ exp

[
K Tr G

(
L(n)

K

)]
, (11)

for large K, where · · · and [· · ·]H denote the averages with respect to b0, η, and H and to
only H, respectively. Transformation of equation (10) is valid if the eigenvalue spectrum
of H†H is self-averaging, i.e., if the discrepancy between the eigenvalue spectrum of typical
samples of H†H and its average vanishes as K,L → ∞ with keeping the load β = K/L

finite, as assumed hereinafter. A practical method to evaluate functions GH(x) and G(x) and
the validation of equation (10) are discussed later herein.

Intrinsic permutation symmetry among replicas naturally leads to the replica symmetric
(RS) ansatz. This implies that configurations characterized by 1 · τ a = b0 · ba =
Km (a = 1, 2, . . . , n) and τ a · τ b = ba · bb = Kq(a �= b) provide the most dominant
contribution to the evaluation of Zn. Note that the RS ansatz requires obvious symmetry
τ a · τ b = τ b · τ a , which enforces qab = qba = q to be real at the saddle point for
∀ a, b = 1, 2, . . . , n. Under this ansatz, the K ×K matrix L(n) has three types of eigenvalues:
λ1 = −K(Nr + nN0)

−1(1 − q + n(1 − 2m + q)), λ2 = −KN−1
r (1 − q) and λ3 = 0, the

numbers of degeneracy of which are 1, n − 1, and K − n, respectively. This indicates that
equation (11) is evaluated as

exp

[
K

(
G

(
−1 − q + n(1 − 2m + q)

Nr + nN0

)
+ (n − 1)G

(
−1 − q

Nr

))]
. (12)

In addition, the RS ansatz offers the number of microscopic configurations that satisfy
constraints (5) and (6) as

Tr
{τ a}

n∏
a=1

δ(1 · τ a − Km)
∏
a>b

δ(τ a · τ b − Kq) � exp[KSn(q,m)], (13)

where

Sn(q,m) = Extr
q̂,m̂

{
ln

[∫
C

Dζ

(∑
τ∈AS

exp[Re((
√

q̂ζ ∗ + m̂)τ )]

)n]

− nm̂m − n

2
q̂ − n(n − 1)

2
q̂q

}
, (14)

where Extru{· · ·} indicates the extremization of {· · ·} with respect to u and Dζ =
(d Re(ζ ) d Im(ζ )/2π) exp[−|ζ |2/2] denotes the complex Gaussian measure, the variance of
which is normalized to unity in each direction of the real and complex axes. Analytically,
continuing equations (12) and (13) from n ∈ N to n ∈ R yield an expression for assessing the
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configurational average of free energy as

1

K
ln Z = lim

n→0

1

nK
ln Zn

= Extr
m,q,m̂,q̂

{
G

(
−1 − q

Nr

)
+

(
−1 − 2m + q

Nr

+
N0(1 − q)

N2
r

)
G′
(

−1 − q

Nr

)

− m̂m − q̂(1 − q)

2
+
∫

C

Dζ ln

(∑
τ∈AS

exp[Re((
√

q̂ζ ∗ + m̂)τ )]

)}
. (15)

The saddle-point solution yields the bit-error rate for the demodulation strategy b̂k =
argmaxbk

{∑
b\bk

P (b|r)
}

as Pb = ∫
C

Dζ�error(ζ ; q̂, m̂), where �error(ζ ; q̂, m̂) vanishes if
exp[Re((

√
q̂ζ ∗ + m̂)τ )] is maximized by τ = 1 among τ ∈ AS , and unity, otherwise.

Note that both the RS assessment presented here and that of the replica symmetry breaking
(RSB) ansatz are generally possible following the current framework. For instance, as shown
in the appendix, one can evaluate the free energy under the ansatz of one step replica symmetry
breaking (1RSB) by dividing n replicated vectors {τ a} into n/x groups of identical size x and
assuming that the correct saddle point is characterized by the following relative configuration:
τ a · τ b = K,K(q + 	), and Kq for a = b, for the case in which a �= b but a and b belong
to an identical group and otherwise, respectively. In the limit n → 0, the 1RSB saddle-point
equation is obtained as

	̂ = 2

xNr

(G′
0 − G′

1), q̂ = 2N0

N2
r

G′
1 − 2A

Nr

G′′
1, m̂ = 2

Nr

G′
1,

	 =
∫

C

Dζ

(∫
C

Dη
x |〈τ 〉1|2∫
C

Dη
x
−
∣∣∣∣
∫

C
Dη
x〈τ 〉1∫
C

Dη
x

∣∣∣∣
2
)

,

(16)

q =
∫

C

Dζ

∣∣∣∣
∫

C
Dη
x〈τ 〉1∫
C

Dη
x

∣∣∣∣
2

,

m =
∫

C

Dζ

∫
C

Dη
x Re(〈τ 〉1)∫
C

Dη
x
.

Here,

G′
1 = G′(−(1 − q + (x − 1)	)/Nr), G′′

1 = G′′(−(1 − q + (x − 1)	)/Nr),

G′
0 = G′(−(1 − q − 	)/Nr), A = −(1 − 2m + q)/Nr +

(
N0
/
N2

r

)
(1 − q + (x − 1)	),


 =
∑
τ∈AS

exp[Re((
√

	̂η∗ +
√

q̂ζ ∗ + m̂)τ )],

and

〈τ 〉1 = 
−1
∑
τ∈AS

τ exp[Re((
√

	̂η∗ +
√

q̂ζ ∗ + m̂)τ )].

For x → 1, a useful relation∫
C

Dη
〈τ 〉1∫
C

Dη

=
∑

τ∈AS
τ exp[Re((

√
q̂ζ ∗ + m̂)τ )]∑

τ∈AS
exp[Re((

√
q̂ζ ∗ + m̂)τ )]

≡ 〈τ 〉0 (17)

implies that the saddle-point condition of equation (16) is governed by only four out of six
variables, i.e., q̂, m̂, q and m. Actually, the condition for determining the four variables in this
case corresponds to the saddle-point equation of RS free energy (15), which implies that x → 1
RSB analysis is generally reduced to that of RS. Nevertheless, a nontrivial result can still be



Statistical mechanical analysis of the linear vector channel 14091

obtained by investigating the behaviors of 	̂ and 	, which are subserviently determined from
equation (16). This equation guarantees that 	̂ = 	 = 0 always satisfies the saddle-point
condition. However, for x → 1 stability analysis indicates that a nontrivial solution of 	̂ > 0
and 	 > 0 emerges if

2

N2
r

G′′
(

−1 − q

Nr

)∫
C

Dζ(1 − |〈τ 〉0|2)2 > 1, (18)

which is in accordance with the de Almeida–Thouless (AT) condition signaling the local
instability of the RS solution [16].

3.3. Equivalence between quenched and annealed averages in the assessment of G(x)

GH(x) can be assessed by several formulae [17–19]. One formula uses the Stieltjes (or
Cauchy) transformation of ρH(λ) = (1/K)

∑K
k=1 δ(λ−λk), which is the eigenvalue spectrum

of cross-correlation matrix H†H,

x =
∫

dλρH(λ)

�(x) − λ
(19)

where λ1, λ2, . . . , λK are eigenvalues of H†H and are guaranteed to be real because H†H is
Hermitian. For a given x, this relationship determines �(x) implicitly, which is termed the
Stieltjes inversion formula. Using �(x),GH(x) is assessed as

GH(x) =
∫ x

0
dt (�(t) − t−1), (20)

which is equivalent to the R-transformation known in free probability theory [20, 21].
Here, we describe a rather primitive approach. For this objective, we substitute xee† for

L(n) in equation (8), where e is a certain complex vector, the length of which is fixed as
|e|2 = K . Note that the eigenvalues of this operator are Kx and zero, the degeneracies of
which are 1 and K − 1, respectively. Integrating over DU yields the following expression:

exp[KGH(x)] = exp

[
K Tr GH

(
xee†

K

)]
=
∫

DU exp[Tr R(xee†)]

=
∫

C
K duδ(|u|2 − Kx) exp[u†(H†H)u]∫

C
K duδ(|u|2 − Kx)

, (21)

where we set u = √
xUe. Inserting δ(|u|2 −Kx) = ∫ +i∞

−i∞ d� exp[−�(|u|2 −Kx)]/(2π i) and
employing the saddle-point method with respect to the integration of � yields the following
expression:

GH(x) = Extr
�

{
− 1

K
ln det|� − H†H| + �x

}
− ln x − 1,

= Extr
�

{
− 1

K

K∑
k=1

ln|� − λk| + �x

}
− ln x − 1,

= Extr
�

{
−
∫

dλρH(λ) ln|� − λ| + �x

}
− ln x − 1. (22)

In conjunction with equation (11), this indicates that G(x) is offered as

G(x) = Extr
�

{
−
∫

dλρ(λ) ln|� − λ| + �x

}
− ln x − 1, (23)
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using average spectrum ρ(λ) = [ρH(λ)]H if a self-averaging property ρH(λ) → ρ(λ) as
K,L → ∞(β = K/L ∼ O(1)) holds for typical samples of H.

ρ(λ) can be formally assessed as follows [22]. For this, we introduce a partition function
of complex Gaussian spins as

ZGauss
H (λ) ≡

∫
C

K

du exp[−u†(�IK − H†H)u]

= πK [det(�IK − H†H)]−1, (24)

where u is a K-dimensional complex vector and IK denotes a K × K identity matrix. The
dispersion formula

δ(� − λ) = lim
ε→+0

1

π
Im

(
1

� − λ + iε

)
= − 1

π
Im

(
∂

∂�
ln(� − λ)

)
(25)

indicates that ρ(λ) can be assessed as

ρ(�) = 1

π
Im

[
∂

∂�

1

K

[
ln ZGauss

H (�)
]

H

]
, (26)

where K−1
[
ln ZGauss

H (�)
]

H can be evaluated by the replica method.
For this evaluation, we assess the moments of ZGauss

H (λ) for n ∈ N with use of the
saddle-point method, assuming that the saddle point is characterized by the Hermitian matrix
Q = (Qab) = (K−1ua · ub)(a, b = 1, 2, . . . , n). This yields the following expression:

1

K
ln
[(

ZGauss
H (�)

)n]
H = Extr

Q̂,Q

⎧⎨
⎩1

K

[
ln
∫

C
nK

n∏
a=1

dua

× exp

⎡
⎣− n∑

a=1

(ua)†((� − Q̂aa)IK − H†H)ua +
∑
a �=b

Q̂abua · ub

⎤
⎦
⎤
⎦

H

− Tr Q̂Q

⎫⎬
⎭ ,

(27)

where Q̂ = (Q̂ab) denotes the conjugate matrix of Q (Hermitian: does not indicate the
Hermitian conjugate of Q) to perform the saddle-point assessment. A distinctive property of
equation (27) is that Q̂ = 0 always satisfies the saddle-point condition for ∀ n ∈ N. This
means that

1

nK
ln
[(

ZGauss
H (�)

)n]
H = 1

K
[− ln det(�IK − H†H)]H + ln π

= 1

K
ln
[
ZGauss

H (�)
]

H (28)

generally holds for the partition function and ∀n ∈ N. Extending this expression analytically
from n ∈ N to n ∈ R and taking n → 0 yield a formula by which to evaluate ρ(λ) using the
annealed average of the partition function as

ρ(�) = 1

π
Im

[
∂

∂�

1

K
ln
[
ZGauss

H (�)
]

H

]
. (29)

Let us insert this expression to equation (23) and perform partial integral. This operation and
the dispersion formula (25) yield another expression of G(x) as follows:

G(x) = Extr
�

{
1

K
ln
[
ZGauss

H (�)
]

H + �x − ln π

}
− ln x − 1

= Extr
�

{
1

K
ln
∫

C
K

du
πK

[exp[−u†(�IK − H†H)u]]H + �x

}
− ln x − 1
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= 1

K
ln

[∫
C

K duδ(|u|2 − Kx) exp[u†(H†H)u]∫
C

K duδ(|u|2 − Kx)

]
H

= 1

K
ln[exp[KGH(x)]]H. (30)

Equations (11), (22) and (30) indicate that equivalence between annealed and quenched
averages holds in the assessment of G(x), which validates replacement in equation (10).

The current argument may be useful in assessing the typical performance of an ensemble
of channels. Equations (19) and (20) can be used for evaluating the performance of a
single sample of H or for evaluating the performance of a channel ensemble, in which
the eigenvalue spectrum is fixed [13, 21]. However, naive extension to the analysis of
the typical performance of a channel ensemble along this direction generally requires taking
configurational averages with respect to a certain distribution of H after evaluating the sample-
by-sample performance of H using equations (19) and (20). From a practical viewpoint, this
is not possible. However, equation (30) indicates that the typical performance of a channel
ensemble can be evaluated using a single function G(x) that characterizes the ensemble
property if the eigenvalue spectra are self-averaging. This function can be assessed by the
calculation of an annealed average, which, practically speaking, is in most cases much simpler
than the calculation of the quenched averages. Formula (29) is useful as well because this
equation can be used to numerically evaluate ρ(λ) for a certain class of ensemble, for which
analytical evaluation of ρ(λ) is difficult. This is demonstrated in the following section.

4. Application

4.1. Kronecker model

Let us demonstrate the significance of the proposed framework by analyzing a certain channel
ensemble. The ensemble that we focus on is termed the Kronecker model, which is a standard
MIMO model [12, 23, 24].

In this model, the channel transfer matrix H is represented as

H =
√

RrZ
√

Rt , (31)

where Z = (zlk) is an L × K random matrix, each component of which is independently
sampled from an identical circularly symmetric complex Gaussian distribution P(z) =
Lπ−1 exp

[−L|z|2]. Here, Rr is an L × L Hermitian matrix that represents the effect of
spatial correlation among receivers and antennas. The K × K Hermitian matrix Rt represents
similar effects for transmit antennas. We assume that eigenvalue spectra of Rr and Rt are
given as ρr(λ) and ρt (λ), respectively.

4.2. Average eigenvalue spectrum

For analyzing the typical property, we first introduce an expression of the partition function of
the complex Gaussian spins

ZGauss
H (�) =

∫
C

K

du exp[−u†(�IK − H†H)u]

=
∫

C
K

du exp[−�|u|2 + (Z
√

Rtu)†Rr (Z
√

Rtu)]. (32)

Note that for fixed u in the integrand of equation (32) Z
√

Rtu ≡ v = (vl)(l = 1, 2, . . . , L)

can be handled as a circularly symmetric zero-mean L-dimensional complex Gaussian random
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vector that is characterized by covariance [v∗
l vj ]H = L−1u†Rtuδlj = K−1βu†Rtuδlj (l, j =

1, 2, . . . , L) when each component of Z in equation (31) is independently sampled from the
identical distribution P(z) = Lπ−1 exp[−L|z|2]. Taking this property into consideration, we
evaluate the annealed average of equation (32) as[
ZGauss

H (�)
]

H =
∫

d(KQ) d(KβT )

∫
C

K

duδ(|u|2 − KQ)δ(u†Rtu − KβT )

× exp[−�|u|2] ×
∫

C
L

dv

(πβT )N
exp

[
−|v|2

βT
+ v†Rrv

]

=
∫

d(KQ) d(KβT )

∫ i∞

−i∞

dQ̂

2π i

dT̂

2π i

∫
C

K

du exp[−u†((� + Q̂)IK − T̂ Rt )u]

× exp[K(Q̂Q − T̂ T )] × [det(IL − βT Rr )]
−1

=
∫

d(KQ) d(KβT )

∫ i∞

−i∞

dQ̂

2π i

dT̂

2π i
exp[K(Q̂Q − T̂ T )]

×πK [det((� + Q̂)IL − T̂ Rt )]
−1 × [det(IL − βT Rr )]

−1. (33)

Utilizing the relations K−1 ln det((� + Q̂)IK − T̂ Rt ) = ∫
dλρt (λ) ln(� + Q̂ − T̂ λ) and

L−1 ln det(IL − βT Rr ) = ∫
dλρr(λ) ln(1 − βT λ), this equation indicates that the annealed

average of the partition function is evaluated by the saddle-point method as

1

K
ln
[
ZGauss

H (�)
]

H = Extr
Q̂,Q,T̂ ,T

{
ln π + Q̂Q − T̂ T −

∫
dλρt (λ) ln(� + Q̂ − T̂ λ)

− 1

β

∫
dλρr(λ) ln(1 − βT λ)

}
. (34)

This yields the following equations:

T =
∫

dλ
λρt (λ)

� − T̂ λ
, (35)

T̂ =
∫

dλ
λρr(λ)

1 − βT λ
, (36)

which are only relevant for the saddle-point condition because Q̂ = 0 always holds. The
solution of equations (35) and (36) yields the average eigenvalue spectrum as

ρ(�) = 1

π
Im(Q) = 1

π
Im

{∫
dλ

ρt (λ)

� − T̂ λ

}
. (37)

4.3. Performance assessment for correlation matrices of Töplitz type

We applied the proposed scheme to the case in which both correlation matrices Rr and Rt are
of the Töplitz type, in which the (i, j) elements of Rr and Rt are given as r |i−j | and t |i−j |,
respectively, where 0 < r < 1 and 0 < t < 1. For matrices of this type, eigenvalue spectra
can be computed analytically in the limit of K,L → ∞ as

ρr(λ) = 1

πλ
√

(α+ − λ)(λ − α−)
, α± = 1 ± r

1 ∓ r
, (38)

and similarly for ρt (λ). For the purpose of illustrating generality, we employed numerical
methods based on equations (23) and (29) to analyze this model, although expression (38)
potentiates further analytical treatment, which will be reported elsewhere [25].
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ρ(λ)

λ

Figure 1. Eigenvalue spectrum of channel transfer cross-correlation matrix H†H. The comparison
of the analytical result obtained by the scheme demonstrated in section 4 (curve) and the result
obtained by numerical diagonalization of randomly-generated cross-correlation matrix (markers)
is depicted. Here, each parameter is set as r = t = 0.2, β = 1.5, and 200 samples of a 500 ×
750 random channel transfer matrix are used for numerical diagonalization. The results show good
agreement.

Figure 1 shows a comparison between the numerical average of the eigenvalue spectrum
estimated from 200 samples of a 500 × 750 random channel transfer matrix (markers) and
the theoretical prediction calculated from equation (37) by numerically solving equations (35)
and (36) (curve). The excellent agreement between the experimental and theoretical data in
this figure indicates that our approach to the assessment of the average eigenvalue spectrum
based on the numerical saddle-point analysis of the annealed average of a partition function
works rather efficiently in this case.

Figures 2(a) and (b) represent the communication performance assessed by the current
framework. For convenience, the data in these figures are computed for S = 2 (BPSK) and
real channels in which all elements of H and channel noises are restricted to real numbers
by replacing complex normal distribution P(u) = π−1 exp[−|u|2] and unitary matrix U with
real normal distribution P(x) = (2π)−1/2 exp[−x2/2] and orthogonal matrix O in computing
G(x). Even if such a restriction is imposed, the framework is completely parallel. The only
difference is that prefactor 1/2 is placed in front of the definitions of GH(x) and G(x). The
curves are provided by the saddle-point condition of equation (15), numerically assessing
G(x) from ρ(λ) using equation (23), while the experimental results denoted by markers
were obtained by the Thouless–Anderson–Palmer equation of the proposed system based on
a strategy similar to equation (12) of [13]. The reasonably good consistency between the
curves and markers indicates the significance of the proposed framework in the performance
assessment of linear vector channels of discrete inputs.

5. Summary

In summary, we have developed a framework by which to analyze linear vector channels of
discrete inputs based on the replica method. Assuming uniformity of the prior probability of
inputs makes it possible to characterize the typical property of the objective channel ensemble
by a single function G(x) if the eigenvalue spectrum of the cross-correlation matrix of the
channel transfer matrix is self-averaging. We have also presented a practical scheme by which
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Pb

β = K

(a)

Pb

Eb N0 [dB]

(b)

L

Figure 2. (a) Bit error rate Pb versus the ratio β = K/L under the condition N0 = Nr = 0.37, L =
1024, and a 500 sample average. The solid/broken lines indicate the theoretical prediction obtained
by the proposed scheme for the cases of r = t = 0.2/r = t = 0 (uncorrelated), respectively. The
bars indicate the result of the numerical experiment in the case of r = t = 0.2, which shows good
agreement with the prediction, except for the region in the vicinity of the waterfall (first-order
phase transition) point. (b) Bit error rate Pb versus signal-to-noise ratio Eb/N0 under the condition
of β = 1.1, r = t = 0.2, L = 1024, and a 500 sample average. The bars, which express the
numerical results, show good agreement with the theoretical prediction (solid). The broken line
indicates the analytical results for the uncorrelated case.

to evaluate G(x) and an average eigenvalue spectrum ρ(λ) using an annealed average of a
partition function of Gaussian spins. The significance of the proposed scheme is demonstrated
by application to an existing channel ensemble called the Kronecker model.

Future studies will include the mathematical validation of equation (7) and the
development of a practical demodulation algorithm [26, 27].
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Appendix. Free energy under 1RSB ansatz

Under the one-step replica symmetry (1RSB) ansatz, n replicated replicas τ 1, τ 2, . . . , τ n are
divided into n/x groups of identical size x, and the relevant saddle point is characterized by a
relative configuration

τ a · τ b =
⎧⎨
⎩

K, a = b,

K(q + 	), a and b belong to an identical group,

Kq, otherwise,
(A.1)

and 1 · τ a = m(a, b = 1, 2, . . . , n), where q, 	 and m are assumed to be real to satisfy
obvious symmetry τ a · τ b = τ b · τ a . Here, x serves as Parisi’s replica symmetry breaking
parameter after analytical continuation. For {τ a} that satisfies this configuration, L(n) has
four types of eigenvalues: λ1 = −K(Nr + nN0)

−1(1 − q + (x − 1)	 + n(1 − 2m + q)), λ2 =
−KN−1

r (1−q + (x −1)	), λ3 = −KN−1
r (1−q −	) and λ4 = 0, the degeneracies of which
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are 1, n/x − 1, n − n/x, and K − n, respectively. This provides the following expression:

Tr G

(
L(n)

K

)
= nG

(
−1 − q − 	

Nr

)
+

n

x

(
G

(
−1 − q + (x − 1)	

Nr

)
− G

(
−1 − q − 	

Nr

))

+ G

(
−1 − q + (x − 1)	 + n(1 − 2m + q)

Nr + nN0

)
− G

(
−1 − q + (x − 1)	

Nr

)
.

(A.2)

Using the saddle-point method, the number of microscopic configurations that satisfy the
current ansatz increases as exp

[
KS1RSB

n (q,	,m; x)
]
, where

S1RSB
n (q,	,m; x) = Extr

q̂,	̂,m̂

{
ln

[∫
C

Dζ

(∫
C

Dη
(

Tr
τ∈AS

exp[Re((
√

	̂η∗ +
√

q̂ζ ∗ + m̂)τ )]
)x) n

x

]

− nm̂m − n

2
(q̂ + 	̂) − n

x

x(x − 1)

2
((q̂ + 	̂)(q + 	) − q̂q) − n(n − 1)

2
q̂q

}
.

(A.3)

Equations (A.2) and (A.3) indicate that under the 1RSB ansatz, free energy is assessed as

1

K
ln Z = lim

n→0

1

nK
ln Zn

= Extr
q,	,m,q̂,	̂,m̂

{
G

(
−1 − q − 	

Nr

)
+

1

x

(
G

(
−1 − q + (x − 1)	

Nr

)

−G

(
−1 − q − 	

Nr

))
+

(
−1 − 2m + q

Nr

+
N0(1 − q + (x − 1)	)

N2
r

)

× G′
(

−1 − q + (x − 1)	

Nr

)
− m̂m − 1

2
(q̂ + 	̂)

− x − 1

2
((q̂ + 	̂)(q + 	) − q̂q) +

1

2
q̂q

+
1

x

∫
C

Dζ ln

[∫
C

Dη
(

Tr
τ∈AS

exp[Re((
√

	̂η∗ +
√

q̂ζ ∗ + m̂)τ )]
)x]}

. (A.4)
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